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1 Introduction005 005

Remote sensing data campaigns are at the heart of monitoring invasive species006 006

and the management of counteractions. However, challenges arise from lim-007 007

ited species data, high degree of variation as plants evolve, changing environ-008 008

ments and lighting conditions, and sensor-induced variations [6]. Additionally,009 009

label quantity and quality required for robust Deep Learning models are diffi-010 010

cult to acquire, as only limited samples with educated consistent labeling can011 011

be provided [1, 7]. Remote locations with limited bandwidths and tight time-012 012

frames further limit recruiting large computational resources or qualified ex-013 013

perts. A pipeline to combine self-supervised learning with Sub-Ensembles for014 014

out-of-distribution (OOD) detection and reducing the labeling effort [5, 9] by015 015

selecting high-entropy-samples [8] is proposed in this research. The pipeline is016 016

demonstrated with a resnet-18 model [2, 10] foundation model (ImageNet), and017 017

is trainable on consumer-grade hardware overnight and therefore applicable to018 018

field-use.019 019

2 Materials and Methods020 020

Sub-Ensembles [9] can be used as an approximation to Deep Ensembles [4], which021 021

quantify uncertainty through the cross-entropy of class indices:022 022

H(x) = −
∑
c∈C

pc(yc|x) log pc(yc|x) (1)023 023

Fig. 1: Process pipeline. Initally, a set of labeled examples is required. Raw data from
a new site is used to train an autoencoder (AE). The backbone and bottleneck of the
AE are used to train multiple classification heads as a Sub-Ensemble, which is used to
predict unseen images, sort by entropy and add to the dataset for the next site.
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Table 1: Image Classification Accuracy across Sites and Ablations

Site 2 Site 3 Site 4

Growth State Flowering Vegetative Vegetative
Selection Backbone Heads True Class 75.55% 11.87% 50.51%

full ae single 57.86% 34.39% 80.61%
ae denoise single 47.96% 33.87% 49.53 %

100 random ae single 52.06% 16.63% 51.38%
ae denoise single 26.83% 78.69% 49.53%

100 random ae ensmb. 10 74.55% 9.52% 50.51%
ae denoise ensmb. 10 74.62% 11.96% 72.16%

100
entropy-based

ae ensmb. 10 74.55% 37.10% 49.49%
ae denoise ensmb. 10 74.61% 90.55% 49.49%

where p(yc|x) is estimated by the mean of all heads. Training an AE on raw024 024

images is proposed as a pretext-task due to limited labeled data. Augmenta-025 025

tions such as Masked-Image-Modeling have been shown to boost OOD perfor-026 026

mance [5]. The pipeline of Fig. 1 is demonstrated on datasets from four sites and027 027

image classification is used to identify African lovegrass on orthomosaic patches.028 028

True labels are generated using overlaid and upsampled multispectral orthomo-029 029

saics [3]. AEs are trained on random 32x32 crops from 2000 256x256 patches030 030

from high-resolution imagery.031 031

Ablations replace the sampling by entropy with random sampling. AE pre-032 032

training is staged into denoising AE or standard AE. As a baseline a resnet with033 033

a single head is trained and with limited samples or with the full labeled dataset034 034

of the previous sites.035 035

3 Results036 036

Tab. 1 shows that Sub-Ensembles may yield benefits when sufficient information037 037

is included. When data is scarce, such as between sites 2 and 3 with few samples,038 038

increase is negligible. Using AE backbones does not yield any increases, however,039 039

denoising AEs do. Note the large differences in true classes between sites, as well040 040

as the changing growth state from site 2 to 3. An entire cycle can be trained in041 041

less than 12 hours, requiring under 4 GB GPU memory.042 042

4 Conclusion043 043

Results show that sampling by entropy can improve the classification perfor-044 044

mance and that denoising AEs improve the performance over only using labeled045 045

samples. Denoising AEs capture global image properties as opposed to local046 046

details and the primary appearance difference between flowering and vegeta-047 047

tive ALG are fewer fine flower-strands. The inconsistent, yet promising, results048 048

in Tab. 1 highlight that more research is necessary with the potential of trunk049 049

network improvements yielding the required consistency [9]. Future research will050 050

address the combination of pipeline elements, such as sophisticated AE archi-051 051

tectures and training schemes and the impact of sampling. Also larger scale and052 052

distributed scenarios (via model merging techniques) will be explored.053 053
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