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1 Introduction005 005

The pathosystem Arabidopsis thaliana/Pseudomonas syringae pathovar tomato006 006

DC3000 is commonly used as a model for plant-pathogen interaction [10]. The007 007

disease symptoms consist of stains of varied colors [5]. The advent of high-008 008

throughput phenotyping platforms allows for the simultaneous study of many009 009

plants in different conditions. However, segmentation of symptomatic plants re-010 010

mains difficult because brown symptoms may appear similar to the soil, and011 011

moss and algae have the same color as the plant [3]. Most articles related to012 012

A. Thaliana’s segmentation have used the standard CVPPP dataset containing013 013

healthy plants [2, 8]. At the moment the state-of-the-art is LS-Net [3]. Articles014 014

addressing symptomatic plants train new neural networks and are either de-015 015

structive [7, 9] or need covers to help with segmentation [4]. This work aims016 016

to address the segmentation of symptomatic A. thaliana plants on natural soil017 017

without training a deep learning model and using the least possible amount of018 018

annotated images. To this end, we leverage on the Segment Anything Model019 019

(SAM) [6]. With SAM, pixels can be used as prompts by setting them as fore-020 020

ground or background. We propose a method to set these prompts automatically,021 021

using the lowest amount of annotated images possible.022 022

2 Materials and Methods023 023

The plants used in the experiment were grown in a high-throughput growth024 024

chamber with image acquisition from the top view. The created dataset con-025 025

tained 354 images, 59 containing healthy plants and 295 symptomatic plants.026 026

The dataset was divided into a training set (206 images), and, a test set (89027 027

images).028 028

In this method, we split the image’s pixels into 3 classes: plant, background,029 029

and, unknown, using histograms, fig. 1b. We computed accumulated histograms030 030

for all training images for all channels in 4 color spaces: RGB, HSV, YIQ, and,031 031

LAB. We built separate histograms for healthy and infected photos. We then032 032

set 2 thresholds, the first one was set at 0.95 quantiles of the healthy plant’s033 033

histogram, and all pixels under this value were assigned to the plant class. The034 034

second threshold was set at quantiles 0.995 of the infected plant’s histogram,035 035

all pixels over this value were assigned to the background class. Pixels located036 036

between the 2 thresholds were assigned to the unknown class. These quantile037 037
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(a) Input image (b) 3 class mask. (c) Prompts. (d) SAM with prompts

Fig. 1: Segmentation pipeline steps.

values were set so that the least amount of plant and background pixels would be038 038

swapped when assigning classes. The next step was creating separate thresholded039 039

images containing plant and background pixels, unknown pixels were discarded040 040

at this stage. Then, superpixels were created using the SLIC method [1] on041 041

each thresholded image, 200 for the plant image and 100 for the background042 042

image. With these quantities, plant superpixels could capture smaller leaves043 043

and background superpixels were kept to a reasonable amount. Superpixels not044 044

matching the target class were discarded. Each superpixel’s center was then used045 045

as a prompt, fig. 1c, to segment the input image with SAM, fig. 1d.046 046

To assess the minimum number of images needed for good performance047 047

we performed the threshold search with the full training dataset using cross-048 048

validation and with subsets of the dataset containing 2, 10, and, 30 images using049 049

a validation dataset with the size of a cross-validation fold. Each experiment was050 050

performed 5 times.051 051

3 Results and Discussion052 052

When searching the thresholds with the full dataset the average cross-validation053 053

Dice was 0.9972 with an average standard deviation of 0.0001. When only using054 054

2 samples, the average Dice was 0.9972 with a standard deviation of 0.0005. This055 055

shows that 2 annotated images are enough to calculate the thresholds. We also056 056

applied our method to the CVPPP dataset and, compared the results to the057 057

state-of-the-art [3], we obtained a Dice of 0.9841 on the test dataset compared058 058

to 0.9651, but, with a lower IoU score, 0.8771 versus 0.9339, due to segmentation059 059

errors in dataset A3.060 060

4 Conclusion and Perspectives061 061

In this work, we have presented a method to obtain good segmentation results062 062

with only 2 annotated images without training a new segmentation deep learn-063 063

ing model. This nondestructive method will allow scientists to track the plant064 064

pathogen interaction over time. It would now be interesting to apply this method065 065

to other pathosystems and improve the results on the CVPPP dataset.066 066
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